94 research outputs found

    Policies for Self Tuning Home Networks

    Get PDF
    A home network (HN) is usually managed by a user who does not possess knowledge and skills required to perform management tasks. When abnormalities are detected, it is desirable to let the network tune itself under the direction of certain policies. However, self tuning tasks usually require coordination between several network components and most of the network management policies can only specify local tasks. In this paper, we propose a state machine based policy framework to address the problem of fault and performance management in the context of HN. Policies can be specified for complex management tasks as global state machines which incorporate global system behaviour monitoring and reactions. We demonstrate the policy framework through a case study in which policies are specified for dynamic selection of frequency channel in order to improve wireless link quality in the presence of RF interference

    A Flexible and Scalable Architecture for Real-Time ANT+ Sensor Data Acquisition and NoSQL Storage

    Get PDF
    Wireless Personal or Body Area Networks (WPANs or WBANs) are the main mechanisms to develop healthcare systems for an ageing society. Such systems offer monitoring, security, and caring services by measuring physiological body parameters using wearable devices. Wireless sensor networks allow inexpensive, continuous, and real-time updates of the sensor data, to the data repositories via an Internet. A great deal of research is going on with a focus on technical, managerial, economic, and social health issues. The technical obstacles, which we encounter, in general, are better methodologies, architectures, and context data storage. Sensor communication, data processing and interpretation, data interchange format, data transferal, and context data storage are sensitive phases during the whole process of body parameter acquisition until the storage. ANT+ is a proprietary (but open access) low energy protocol, which supports device interoperability by mutually agreeing upon device profile standards. We have implemented a prototype, based upon ANT+ enabled sensors for a real-time scenario. This paper presents a system architecture, with its software organization, for real-time message interpretation, event-driven based real-time bidirectional communication, and schema flexible storage. A computer user uses it to acquire and to transmit the data using a Windows service to the context server

    On the performance, availability and energy consumption modelling of clustered IoT systems

    Get PDF
    Wireless sensor networks (WSNs) form a large part of the ecosystem of the Internet of Things (IoT), hence they have numerous application domains with varying performance and availability requirements. Limited resources that include processing capability, queue capacity, and available energy in addition to frequent node and link failures degrade the performance and availability of these networks. In an attempt to efficiently utilise the limited resources and to maintain the reliable network with efficient data transmission; it is common to select a clustering approach, where a cluster head is selected among the diverse IoT devices. This study presents the stochastic performance as well as the energy evaluation model for WSNs that have both node and link failures. The model developed considers an integrated performance and availability approach. Various duty cycling schemes within the medium-access control of the WSNs are also considered to incorporate the impact of sleeping/idle states that are presented using analytical modeling. The results presented using the proposed analytical models show the effects of factors such as failures, various queue capacities and system scalability. The analytical results presented are in very good agreement with simulation results and also present an important fact that the proposed models are very useful for identification of thresholds between WSN system characteristics

    Energy-efficient blockchain implementation for Cognitive Wireless Communication Networks (CWCNs)

    Get PDF
    Abstract Considering the computation resources available with sensor devices and the value and validity of Cognitive Wireless Communication Network (CWCN), traditional blockchain is not feasible for CWCN. Further, considering the security and privacy for CWCN that can directly impact human life (as in the case of ambient assisted living applications), blockchain provides a good solution for such applications, however, with some simplicity in the computation of Proof of Work (PoW). Therefore, the fourth objective solution comes up with a simplified energy-efficient blockchain implementation for CWCN that consumes less energy in computation time. The energy-hungry blockchain has been implemented on resource-constrained CWCN for ambient assisted living applications specialized for elderly care. The process includes a collection of physical environmental parameters on a single board computer-based CWCN. The implementation includes possible simplification in the most energy-consuming process, i.e., the mining process, which makes it energy efficient in computation time as energy consumption is a computation time factor

    Packet arrival analysis in wireless sensor networks

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various application areas including health care, environmental monitoring, security, and military purposes despite prominent performance and availability challenges. Clustering plays an important role in enhancement of the life span and scalability of the network, in such applications. Although researchers continue to address these grand challenges, the type of distributions for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. Modelling the behaviour of the networks becomes essential for estimating the performance metrics and further lead to decisions for improving the network performance, hence highlighting the importance of identifying the type of inter-arrival distributions at the cluster head. In this paper, we present extensive discussions on the assumptions of exponential distributions in WSNs, and present numerical results based on Q-Q plots for estimating the arrival distributions. The work is further extended to understand the impact of end-to-end delay and its effect on inter-arrival time distributions, based on the type of medium access control used in WSNs. Future work is also presented on the grounds that such comparisons based on simple eye checks are insufficient. Since in many cases such plots may lead to incorrect conclusions, demanding the necessity for validating the types of distributions. Statistical analysis is necessary to estimate and validate the empirical distributions of the arrivals in WSNs

    Does the assumption of exponential arrival distributions in wireless sensor networks hold?

    Get PDF
    Wireless Sensor Networks have seen a tremendous growth in various application areas despite prominent performance and availability challenges. One of the common configurations to prolong the lifetime and deal with the path loss phenomena having a multi-hop set-up with clusters and cluster heads to relay the information. Although researchers continue to address these challenges, the type of distribution for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. The general practice in published works is to compare an empirical exponential arrival distribution of wireless sensor networks with a theoretical exponential distribution in a Q-Q plot diagram. In this paper, we show that such comparisons based on simple eye checks are not sufficient since, in many cases, incorrect conclusions may be drawn from such plots. After estimating the Maximum Likelihood parameters of empirical distributions, we generate theoretical distributions based on the estimated parameters. By conducting Kolmogorov-Smirnov Test Statistics for each generated inter-arrival time distributions, we find out, if it is possible to represent the traffic into the cluster head by using theoretical distribution. Empirical exponential arrival distribution assumption of wireless sensor networks holds only for a few cases. There are both theoretically known such as Gamma, Log-normal and Mixed Log-Normal of arrival distributions and theoretically unknown such as non-Exponential and Mixed cases of arrival in wireless sensor networks. The work is further extended to understand the effect of delay on inter-arrival time distributions based on the type of medium access control used in wireless sensor networks
    corecore